H=-16t^2+114+18

Simple and best practice solution for H=-16t^2+114+18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+114+18 equation:



=-16H^2+114+18
We move all terms to the left:
-(-16H^2+114+18)=0
We get rid of parentheses
16H^2-114-18=0
We add all the numbers together, and all the variables
16H^2-132=0
a = 16; b = 0; c = -132;
Δ = b2-4ac
Δ = 02-4·16·(-132)
Δ = 8448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8448}=\sqrt{256*33}=\sqrt{256}*\sqrt{33}=16\sqrt{33}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{33}}{2*16}=\frac{0-16\sqrt{33}}{32} =-\frac{16\sqrt{33}}{32} =-\frac{\sqrt{33}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{33}}{2*16}=\frac{0+16\sqrt{33}}{32} =\frac{16\sqrt{33}}{32} =\frac{\sqrt{33}}{2} $

See similar equations:

| 4x+4=15x | | 40+15g=45+45g | | I4(0.5+k)=-14 | | 175m−125m+39,000=40,400−150m | | y=93 | | 12.97x+0.13=13.47x+0.08 | | 40+0.25g=45+0.35g | | 0.8x+0.6(x-18)=3.4 | | 12.97+0.13x=13.47+0.08x | | 25=5h | | 12.97x+0.13x=13.47x+0.08x | | 5h+12≤=-3 | | 60-X+20-2x=3x+10+2x-2 | | 18.9x+145.8=14.6x+317.8 | | 4x+1=-2x+4 | | 2x^2+7x+4=6x+10 | | 40+15g+0.25=45+45g+0.35 | | 2y-3(y+4)=6y+23 | | 2x(x+4)=4x+6x(x+5) | | 25-c=19 | | x+12+3x-3=2x-1 | | 1-2x+6x=8+x-8-8 | | 40+15g+0.25g=45+45g+0.35g | | 2/5.5=8/x | | 7x(x-2)=3-2(x+4 | | 5x-2+8x+1+90=180 | | 10u=10,000,000 | | 12x-6x+198=-12x+120 | | g/5+19=28 | | 2(4^2x+2)=128 | | -21/7=3/x | | 12x+60=15x+6-2x-4 |

Equations solver categories